Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neuromuscul Disord ; 38: 42-43, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564999
2.
Eur J Neurol ; 30(8): 2506-2517, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166430

RESUMO

BACKGROUND AND PURPOSE: CAV3 gene mutations, mostly inherited as an autosomal dominant trait, cause various skeletal muscle diseases. Clinical presentations encompass proximal myopathy, distal myopathy, or isolated persistent high creatine kinase (CK) with a major overlapping phenotype. METHODS: Twenty-three patients with CAV3 symptomatic mutations, from 16 different families, were included in a retrospective cohort. Mean follow-up duration was 24.2 ± 15.0 years. Clinical and functional data were collected during the follow-up. The results of muscle imaging, electroneuromyography, muscle histopathology, immunohistochemistry, and caveolin-3 Western blot analysis were also compiled. RESULTS: Exercise intolerance was the most common phenotype (52%). Eighty percent of patients had calf hypertrophy, and only 65% of patients presented rippling. One patient presented initially with camptocormia. A walking aid was required in only two patients. Electroneuromyography was mostly normal. CK level was elevated in all patients. No patient had cardiac or respiratory impairment. Muscle imaging showed fatty involvement of semimembranosus, semitendinosus, rectus femoris, biceps brachialis, and spinal muscles. Almost all (87%) of the biopsies were abnormal but without any specific pattern. Whereas a quarter of patients had normal caveolin-3 immunohistochemistry results, Western blots disclosed a reduced amount of the protein. We report nine mutations, including four not previously described. No phenotype-genotype correlation was evidenced. CONCLUSIONS: Caveolinopathy has diverse clinical, muscle imaging, and histological presentations but often has limited functional impact. Mild forms of the disease, an atypical phenotype, and normal caveolin-3 immunostaining are pitfalls leading to misdiagnosis.


Assuntos
Caveolina 3 , Doenças Musculares , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Estudos Retrospectivos , Seguimentos , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculo Esquelético/patologia , Mutação/genética
4.
EBioMedicine ; 86: 104367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410115

RESUMO

BACKGROUND: Normative values for different morphometric parameters of muscle fibres during paediatric development, i.e. from 0 to 18 years, are currently unavailable. They would be of major importance to accurately evaluate pathological changes and could be used as reference biomarkers for evaluating treatment response in clinical trials, or physiological adjustments in sports or ageing. METHODS: Data were derived from 482 images with a total of 33 094 fibres from 10 µm cross-sections of snap-frozen muscle from 83 deltoid muscle biopsies from patients, 0-18 years, without neuromuscular pathology stained with ATPase 9.4. Data was acquired and analysed with patented image analysis algorithms from "CARPACCIO.cloud". Several parameters were extracted or calculated, including cross-sectional area (CSA), fibre type, circularity, as well as the Minimum diameter of Feret (MinFeret). FINDINGS: This study illustrates changes in quantitative parameters for muscle morphology over the course of paediatric development and the pivotal changes occurring around puberty. Only fibre size parameters (MinFeret, CSA) are dependent on gender, and only after puberty. All other parameters vary in a similar manner for females and males. The proportion of type 1 fibres is essentially constant from birth to age 10, decreasing to ≈40% by age 18. Circularity decreases with age, to plateau after age 10 for both fibre types. INTERPRETATION: Normative values and reference charts for muscle fibre types in this age range have been generated to allow comparison of data from patients in pathology laboratories working on neuromuscular diseases. FUNDING: BPI FRANCE, PULSALYS, Association de l'Institut de Myologie, French National Research Agency (ANR), LABEX CORTEX of Université de Lyon.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Masculino , Feminino , Humanos , Criança , Adolescente , Estudos Transversais , Biópsia , Envelhecimento , Músculo Esquelético
5.
Med Sci (Paris) ; 38 Hors série n° 1: 17-28, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36649630

RESUMO

Neuromuscular diseases with neonatal or perinatal onset are usually very severe. Their diagnosis requires rigorous studies in order to determine the cause of the disease and thus help to establish the vital prognosis. Neonatal muscle biopsy studies are driven by the extreme severity of the clinical picture. The aim of this analysis is to search for or validate a precise diagnosis and etiology. Numerous genes are at the origin of these severe neonatal myopathies, for some of them anomalies of a specific gene could be identified.


Assuntos
Doenças Neuromusculares , Recém-Nascido , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Doenças Neuromusculares/diagnóstico , Biópsia , Músculos/patologia
6.
J Neurol Sci ; 424: 117391, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33799212

RESUMO

Muscle phosphorylase kinase b deficiency (PhK) is a rare disorder of glycogen metabolism characterized by exercise-induced myalgia and cramps, myoglobinuria and progressive muscle weakness. PhK deficiency is due to mutations in the PHKA1 gene inherited in an X-linked manner and is associated to glycogenosis type VIII (GSD VIII also called GSD IXd). PHKA1 gene codes for the αM subunit of the PhK, a multimeric protein complex responsible for the control of glycogen breakdown in muscle. Until now, few patients have been reported with X-linked recessive muscle PhK deficiency due to PHKA1 mutations. All reported patients presented with exercise intolerance and mild myopathy and one of them had cognitive impairment, leading to speculate about a central nervous system involvement in GSD VIII. Here we report in a sibling a novel mutation in the PHKA1 gene associated with a progressive myopathy, exercise intolerance, muscle hypertrophy and cognitive impairment as an associated feature. This report expands the genetic and clinical spectrum of the extremely rare PHKA1-related PhK deficiency and presents new evidences about its involvement in brain development.


Assuntos
Disfunção Cognitiva , Doença de Depósito de Glicogênio , Doenças Musculares , Fosforilase Quinase/genética , Disfunção Cognitiva/genética , Doença de Depósito de Glicogênio/complicações , Doença de Depósito de Glicogênio/genética , Humanos , Mutação/genética
7.
J Med Genet ; 58(9): 602-608, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32994279

RESUMO

BACKGROUND: Congenital nemaline myopathies are rare pathologies characterised by muscle weakness and rod-shaped inclusions in the muscle fibres. METHODS: Using next-generation sequencing, we identified three patients with pathogenic variants in the Troponin T type 1 (TNNT1) gene, coding for the troponin T (TNT) skeletal muscle isoform. RESULTS: The clinical phenotype was similar in all patients, associating hypotonia, orthopaedic deformities and progressive chronic respiratory failure, leading to early death. The anatomopathological phenotype was characterised by a disproportion in the muscle fibre size, endomysial fibrosis and nemaline rods. Molecular analyses of TNNT1 revealed a homozygous deletion of exons 8 and 9 in patient 1; a heterozygous nonsense mutation in exon 9 and retention of part of intron 4 in muscle transcripts in patient 2; and a homozygous, very early nonsense mutation in patient 3.Western blot analyses confirmed the absence of the TNT protein resulting from these mutations. DISCUSSION: The clinical and anatomopathological presentations of our patients reinforce the homogeneous character of the phenotype associated with recessive TNNT1 mutations. Previous studies revealed an impact of recessive variants on the tropomyosin-binding affinity of TNT. We report in our patients a complete loss of TNT protein due to open reading frame disruption or to post-translational degradation of TNT.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/genética , Fenótipo , Troponina T/genética , Biópsia , Pré-Escolar , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Imuno-Histoquímica , Lactente , Análise de Sequência de DNA , Deleção de Sequência , Troponina T/metabolismo
8.
Mitochondrion ; 55: 64-77, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858252

RESUMO

To address the frequency of complex V defects, we systematically sequenced MT-ATP6/8 genes in 512 consecutive patients. We performed functional analysis in muscle or fibroblasts for 12 out of 27 putative homoplasmic mutations and in cybrids for four. Fibroblasts, muscle and cybrids with known deleterious mutations underwent parallel analysis. It included oxidative phosphorylation spectrophotometric assays, western blots, structural analysis, ATP production, glycolysis and cell proliferation evaluation. We demonstrated the deleterious nature of three original mutations. Striking gradation in severity of the mutations consequences and differences between muscle, fibroblasts and cybrids implied a likely under-diagnosis of human complex V defects.


Assuntos
Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Polimorfismo de Nucleotídeo Único , Adulto , Células Cultivadas , Feminino , Fibroblastos/química , Fibroblastos/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Híbridas/química , Células Híbridas/citologia , Masculino , Músculo Esquelético/química , Músculo Esquelético/citologia , Mutação , Fosforilação Oxidativa , Análise de Sequência de DNA
9.
J Neurol ; 266(10): 2524-2534, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267206

RESUMO

Autosomal dominant limb girdle muscular dystrophy D3 HNRNPDL-related is a rare dominant myopathy caused by mutations in HNRNPDL. Only three unrelated families have been described worldwide, a Brazilian and a Chinese carrying the mutation c.1132G>A p.(Asp378Asn), and one Uruguayan with the mutation c.1132G>C p. (Asp378His), both mutations occurring in the same codon. The present study enlarges the clinical, morphological and muscle MRI spectrum of AD-HNRNPDL-related myopathies demonstrating the significant particularities of the disease. We describe two new unrelated Argentinean families, carrying the previously reported c.1132G>C p.(Asp378His) HNRNPDL mutation. There was a wide phenotypic spectrum including oligo-symptomatic cases, pure limb girdle muscle involvement or distal lower limb muscle weakness. Scapular winging was the most common finding, observed in all patients. Muscle MRIs of the thigh, at different stages of the disease, showed particular involvement of adductor magnus and vastus besides a constant preservation of the rectus femoris and the adductor longus muscles, defining a novel MRI pattern. Muscle biopsy findings were characterized by the presence of numerous rimmed vacuoles, cytoplasmic bodies, and abundant autophagic material at the histochemistry and ultrastructural levels. HNRNPDL-related LGMD D3 results in a wide range of clinical phenotypes from the classic proximal form of LGMD to a more distal phenotype. Thigh MRI suggests a specific pattern. Codon 378 of HNRNPDL gene can be considered a mutation hotspot for HNRNPDL-related myopathy. Pathologically, the disease can be classified among the autophagic rimmed vacuolar myopathies as with the other multisystem proteinopathies.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Distrofia Muscular do Cíngulo dos Membros , Idoso , Argentina , Feminino , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Mutação , Linhagem , Fenótipo
11.
Acta Neuropathol Commun ; 7(1): 3, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611313

RESUMO

Several morphological phenotypes have been associated to RYR1-recessive myopathies. We recharacterized the RYR1-recessive morphological spectrum by a large monocentric study performed on 54 muscle biopsies from a large cohort of 48 genetically confirmed patients, using histoenzymology, immunohistochemistry, and ultrastructural studies. We also analysed the level of RyR1 expression in patients' muscle biopsies. We defined "dusty cores" the irregular areas of myofibrillar disorganisation characterised by a reddish-purple granular material deposition with uneven oxidative stain and devoid of ATPase activity, which represent the characteristic lesion in muscle biopsy in 54% of patients. We named Dusty Core Disease (DuCD) the corresponding entity of congenital myopathy. Dusty cores had peculiar histological and ultrastructural characteristics compared to the other core diseases. DuCD muscle biopsies also showed nuclear centralization and type1 fibre predominance. Dusty cores were not observed in other core myopathies and centronuclear myopathies. The other morphological groups in our cohort of patients were: Central Core (CCD: 21%), Core-Rod (C&R:15%) and Type1 predominance "plus" (T1P+:10%). DuCD group was associated to an earlier disease onset, a more severe clinical phenotype and a lowest level of RyR1 expression in muscle, compared to the other groups. Variants located in the bridge solenoid and the pore domains were more frequent in DuCD patients. In conclusion, DuCD is the most frequent histopathological presentation of RYR1-recessive myopathies. Dusty cores represent the unifying morphological lesion among the DuCD pathology spectrum and are the morphological hallmark for the recessive form of disease.


Assuntos
Doenças Musculares/genética , Doenças Musculares/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Idoso , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genes Recessivos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adulto Jovem
12.
Eur Respir J ; 53(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523161

RESUMO

Amyotrophic lateral sclerosis (ALS) patients show progressive respiratory muscle weakness leading to death from respiratory failure. However, there are no data on diaphragm histological changes in ALS patients and how they correlate with routine respiratory measurements.We collected 39 diaphragm biopsies concomitantly with laparoscopic insertion of intradiaphragmatic electrodes during a randomised controlled trial evaluating early diaphragm pacing in ALS (https://clinicaltrials.gov; NCT01583088). Myofibre type, size and distribution were evaluated by immunofluorescence microscopy and correlated with spirometry, respiratory muscle strength and phrenic nerve conduction parameters. The relationship between these variables and diaphragm atrophy was assessed using multivariate regression models.All patients exhibited significant slow- and fast-twitch diaphragmatic atrophy. Vital capacity (VC), maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP) and twitch transdiaphragmatic pressure did not correlate with the severity of diaphragm atrophy. Inspiratory capacity (IC) correlated modestly with slow-twitch myofibre atrophy. Supine fall in VC correlated weakly with fast-twitch myofibre atrophy. Multivariate analysis showed that IC, SNIP and functional residual capacity were independent predictors of slow-twitch diaphragmatic atrophy, but not fast-twitch atrophy.Routine respiratory tests are poor predictors of diaphragm structural changes. Improved detection of diaphragm atrophy is essential for clinical practice and for management of trials specifically targeting diaphragm muscle function.


Assuntos
Esclerose Amiotrófica Lateral/diagnóstico , Esclerose Amiotrófica Lateral/fisiopatologia , Atrofia/diagnóstico , Atrofia/fisiopatologia , Diafragma/fisiopatologia , Respiração , Tecido Adiposo/patologia , Biópsia , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Análise de Regressão , Testes de Função Respiratória , Insuficiência Respiratória/fisiopatologia , Músculos Respiratórios/fisiopatologia , Ultrassonografia , Capacidade Vital
13.
J Med Genet ; 56(9): 617-621, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30327447

RESUMO

BACKGROUND: The activating signal cointegrator 1 (ASC-1) complex acts as a transcriptional coactivator for a variety of transcription factors and consists of four subunits: ASCC1, ASCC2, ASCC3 and TRIP4. A single homozygous mutation in ASCC1 has recently been reported in two families with a severe muscle and bone disorder. OBJECTIVE: We aim to contribute to a better understanding of the ASCC1-related disorder. METHODS: Here, we provide a clinical, histological and genetic description of three additional ASCC1 families. RESULTS: All patients presented with severe prenatal-onset muscle weakness, neonatal hypotonia and arthrogryposis, and congenital bone fractures. The muscle biopsies from the affected infants revealed intense oxidative rims beneath the sarcolemma and scattered remnants of sarcomeres with enlarged Z-bands, potentially representing a histopathological hallmark of the disorder. Sequencing identified recessive nonsense or frameshift mutations in ASCC1, including two novel mutations. CONCLUSION: Overall, this work expands the ASCC1 mutation spectrum, sheds light on the muscle histology of the disorder and emphasises the physiological importance of the ASC-1 complex in fetal muscle and bone development.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Proteínas de Transporte/genética , Fraturas Ósseas/congênito , Fraturas Ósseas/diagnóstico , Debilidade Muscular/genética , Mutação , Alelos , Substituição de Aminoácidos , Biópsia , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Linhagem , Fenótipo , Índice de Gravidade de Doença , Sequenciamento do Exoma
14.
J Neuropathol Exp Neurol ; 77(12): 1101-1114, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365001

RESUMO

Titin-related myopathies are heterogeneous clinical conditions associated with mutations in TTN. To define their histopathologic boundaries and try to overcome the difficulty in assessing the pathogenic role of TTN variants, we performed a thorough morphological skeletal muscle analysis including light and electron microscopy in 23 patients with different clinical phenotypes presenting pathogenic autosomal dominant or autosomal recessive (AR) mutations located in different TTN domains. We identified a consistent pattern characterized by diverse defects in oxidative staining with prominent nuclear internalization in congenital phenotypes (AR-CM) (n = 10), ± necrotic/regenerative fibers, associated with endomysial fibrosis and rimmed vacuoles (RVs) in AR early-onset Emery-Dreifuss-like (AR-ED) (n = 4) and AR adult-onset distal myopathies (n = 4), and cytoplasmic bodies (CBs) as predominant finding in hereditary myopathy with early respiratory failure (HMERF) patients (n = 5). Ultrastructurally, the most significant abnormalities, particularly in AR-CM, were multiple narrow core lesions and/or clear small areas of disorganizations affecting one or a few sarcomeres with M-band and sometimes A-band disruption and loss of thick filaments. CBs were noted in some AR-CM and associated with RVs in HMERF and some AR-ED cases. As a whole, we described recognizable histopathological patterns and structural alterations that could point toward considering the pathogenicity of TTN mutations.


Assuntos
Conectina/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Sarcômeros/genética , Sarcômeros/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/ultraestrutura , Estudos Retrospectivos , Adulto Jovem
16.
Neurology ; 91(4): e339-e348, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29950440

RESUMO

OBJECTIVE: To describe a large series of BIN1 patients, in which a novel founder mutation in the Roma population of southern Spain has been identified. METHODS: Patients diagnosed with centronuclear myopathy (CNM) at 5 major reference centers for neuromuscular disease in Spain (n = 53) were screened for BIN1 mutations. Clinical, histologic, radiologic, and genetic features were analyzed. RESULTS: Eighteen patients from 13 families carried the p.Arg234Cys variant; 16 of them were homozygous for it and 2 had compound heterozygous p.Arg234Cys/p.Arg145Cys mutations. Both BIN1 variants have only been identified in Roma, causing 100% of CNM in this ethnic group in our cohort. The haplotype analysis confirmed all families are related. In addition to clinical features typical of CNM, such as proximal limb weakness and ophthalmoplegia, most patients in our cohort presented with prominent axial weakness, often associated with rigid spine. Severe fat replacement of paravertebral muscles was demonstrated by muscle imaging. This phenotype seems to be specific to the p.Arg234Cys mutation, not reported in other BIN1 mutations. Extreme clinical variability was observed in the 2 compound heterozygous patients for the p.Arg234Cys/p.Arg145Cys mutations, from a congenital onset with catastrophic outcome to a late-onset disease. Screening of European Roma controls (n = 758) for the p.Arg234Cys variant identified a carrier frequency of 3.5% among the Spanish Roma. CONCLUSION: We have identified a BIN1 founder Roma mutation associated with a highly specific phenotype, which is, from the present cohort, the main cause of CNM in Spain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Efeito Fundador , Corpos de Mallory/patologia , Distrofias Musculares/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteínas Nucleares/genética , Roma (Grupo Étnico)/genética , Escoliose/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Humanos , Corpos de Mallory/genética , Pessoa de Meia-Idade , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/etnologia , Miopatias Congênitas Estruturais/diagnóstico por imagem , Miopatias Congênitas Estruturais/etnologia , Fenótipo , Estudos Prospectivos , Estudos Retrospectivos , Roma (Grupo Étnico)/etnologia , Escoliose/diagnóstico por imagem , Escoliose/etnologia , Espanha/etnologia , Adulto Jovem
17.
PLoS One ; 12(10): e0186642, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073160

RESUMO

A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.


Assuntos
Miopatias Distais/genética , Filaminas/genética , Mutação da Fase de Leitura , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Adulto , Biópsia , Miopatias Distais/diagnóstico por imagem , Miopatias Distais/patologia , Feminino , Triagem de Portadores Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Proteínas Serina-Treonina Quinases , Sequenciamento do Exoma
18.
Handb Clin Neurol ; 145: 429-451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28987188

RESUMO

After the advances created by the use of cryostat sections and histochemistry 60 years ago, muscle histopathology is now living a real renaissance. In the field of genetic neuromuscular disorders, muscle biopsy analysis is fundamental to address questions about pathogenicity and protein expression when new genes are discovered through next-generation sequencing approaches. Moreover, the identification of the same gene mutated in previously considered distinct histopathologic entities imposes a constant reassessment of morphologic boundaries in several groups of disorders. In other fields like the acquired inflammatory myopathies, histologic analysis nowadays helps to affirm a diagnosis, set up therapeutic strategies, and verify the success of immunosuppressive treatment. In this exciting scenario morphologists are definitely key figures in the neuromuscular field. The objective of this chapter is to give an overview on morphology of the most frequent and recently identified muscle conditions, stressing the importance that only a combined analysis of clinical findings, muscle histology, and specific ancillary investigations is effective in reaching a precise diagnosis and orienting therapy.


Assuntos
Músculo Esquelético/patologia , Doenças Neuromusculares/patologia , Animais , Humanos
19.
Sci Rep ; 7(1): 4580, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676641

RESUMO

Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.


Assuntos
Actinas/metabolismo , Dinamina II/genética , Predisposição Genética para Doença , Células Musculares/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Actinas/química , Animais , Modelos Animais de Doenças , Dinamina II/metabolismo , Ativação Enzimática , Expressão Gênica , Estudos de Associação Genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos , Mioblastos/metabolismo , Miopatias Congênitas Estruturais/patologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico
20.
Am J Hum Genet ; 99(5): 1086-1105, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745833

RESUMO

This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.


Assuntos
Núcleo Celular/genética , Miopatias Distais/genética , Variação Genética , Miopatias Congênitas Estruturais/genética , Oxirredutases/genética , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Estudos de Coortes , Creatina Quinase/genética , Creatina Quinase/metabolismo , Citoplasma/metabolismo , Miopatias Distais/patologia , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Feminino , Flavoproteínas/metabolismo , Deleção de Genes , Estudo de Associação Genômica Ampla , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Células HEK293 , Humanos , Masculino , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/patologia , Oxirredutases/metabolismo , Linhagem , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...